
Instant
Paranoia

Konstantin Klyagin

English version of an article
published in "Hakin9" Magazine

issue 3/2004

All rights reserved. You are allowed to distribute this document pending no modification is made to its contents.
“Hakin9” Magazine, Wydawnictwo Software, ul. Lewartowskiego 6, 00-190 Warszawa, piotr@software.com.pl

www.hakin9.org2 Hakin9 3/2004

A
tt

ac
k

www.hakin9.org 3Hakin9 3/2004

Instant Messenger security

There are many instant messaging
systems with different features and
capabilities. Their security properties

are also different and it’s obvious that one are
more secure than others. We’ll take a look at
the major players on the IM market, see what
vulnerabilities they have and using which of
them you must be the most paranoid.

Basics
Imagine you came back from your job, sit down
comfortably at your computer and open your
favourite IM client. What happens then?

In a nutshell, when you login to the server,
most client programs first open a socket
connection to their main server. Through this
connection a username (or UIN, depending on a
network) and password pair is verified. If access is
granted, the login procedure goes on proceeding
to the list of contacts and offline messages that
are held server-side until you login (if supported
by network). Then you enter an idle state in
which you can exchange messages, search for
users and enjoy being in touch.

Sending and receiving messages is also
done in more or less generic way for all the

Instant Paranoia
Konstantin Klyagin

Talking every day on your
favorite instant messaging
networks with friends, lovers,
colleagues and partners,
have you ever thought if
your conversations can be
intercepted and become
exposed to someone who
can use them with some evil
intentions?

existing protocols. There are messages sent
through the server (client -> server -> client),
and those that are sent directly (client -> client,
also known as peer to peer). Peer to peer is
quite a common way of direct communications
between two clients, though it is not supported
in all of IM systems. These are used when one of
the clients can connect to another one, knowing
their IP address. Due to specific network setup
or a firewall such connections are possible not
to reach the destination. In this case, fallback to
the through-server scheme is usually made.

What will you learn...
• what level of security and privacy do most

popular IM protocols and applications provide,
• how an intruder can intercept passwords and

communication sent via IM-s.

What should you know...
• sniffing basics (you may want to read articles

Sniffing for beginners and Sniffing in switched
ethernet – Hakin9, issues 1/2003 and 2/2003),

• perl basics (for understanding scripts).

www.hakin9.org2 Hakin9 3/2004

A
tt

ac
k

www.hakin9.org 3Hakin9 3/2004

Instant Messenger security

Threats
Obviously, the common vulnerability
of almost all the instant messaging
protocols is traffic being unencrypted.
This means, no encryption is done on
the data being sent and received, so
a regular network sniffer can easily
capture them. Besides messages,
passwords are often sent as they
are, which can be a real trouble.
Anyone who has access to your
network traffic can easily see your
conversations and even steal your
password.

Getting access to traffic is not
simple. There is no way to sniff it
remotely. In order to do that, a spy
should get access to your computer,
one of your gateways, or even one
of computers on your LAN first. Any,
any place your traffic goes through or
nearby would suffice. Nearby, because
there is also a technique called ARP
spoofing that allows sniffing traffic
even on networks with a switch (read
more about it in the frame How can
you pass the traffic through your
computer). Programs such as Ettercap
(http://ettercap.sourceforge.net/) can
do that. A spy can also intrude into
company network, or to that of the
ISP your company is connected to.
Even not a spy, but just a bored admin,
having another sleepless night filled
with cigars and caffeine is a potential
privacy violator.

The easiest solution to protect
network traffic including IM

conversations is using protocols
which use SSL – that eliminates
the danger of occasional sniffing.
But SSL isn’t absolutely secure
either, for it’s vulnerable to attacks
of the man-in-the-middle kind,
especially in the conditions of lack
of an appropriate PKI (public key
infrastructure). The latter makes it
possible to plug in your own public
key into the connection and see the
traffic as it is. Though, must say even
a bare SSL is way more secure than
plain connections, for it makes things
more difficult for an intruder.

ICQ/AIM
The protocol of ICQ has all of the
vulnerabilities mentioned above. Its
latest version, OSCAR, establishes
client-to-server and peer-to-peer
connections without any traffic
encryption mechanism. That makes
it really trivial to sniff.

In order to check the security of
protocols we will use tcpdump as
the most common sniffer for UNIX-
like systems further on. We assume

you just use Hakin9 Live, so there’s
no need to explain how to install and
configure it.

The command which we will use
is:

tcpdump -X -s 65535 \

 -i any 'port 5190 && tcp' | less

The parameters we use here mean
that tcpdump should listen on every
network interface in the system
(-i any), produce mixed output
of hex dump and printable ASCII
representation of packets (-X) and
display only packets sent from or to
the local TCP port 5190 ('port 5190
&& tcp').

As soon as someone whose
traffic goes through our machine
sends a message, we see the output
similar to presented on Listing 1.

Not only the message (which,
as we can see, is hi there), but also
destination UIN is transmitted in plain
text and can be easily seen straight
in the dump: it’s 340274036.

Peer to peer connections
Sniffing peer-to-peer ICQ
connections is a bit more difficult
due to the fact that a random port
is used for each session. When
establishing a connection to the
server, the client reports a port
number it is going to use for peer-
to-peer communications. Then
each client that has us on his or her
contact list receives the number of
this port. They will use it to connect
whenever there is a need to establish
a direct connection. so it won’t be a
problem for a relatively advanced
traffic analyzer application to catch
the port number in the beginning of
the session and treat this one too.

How can one pass the traffic
through one’s computer
In order to sniff somebody’s IM traffic one must first make this traffic pass through one’s
computer. This can be achieved in several ways:

• The simplest way is to run the sniffer on the very same machine on which the IM
client runs. This way we can sniff our own IM talks to check if our IM client is secure
or not. In all the following examples of sniffing we assume this is the case.

• One can also run the sniffer on any of computers through which the traffic passes.
This can be the case of some malicious administrator who tries to spy users of his
network.

• If an intruder has access to another machine in the same local network as the
victim, sniffing traffic is also possible. It is easier if the network uses a hub, but
it’s also possible to sniff in a switched network using arp spoofing. For more
information on sniffing read articles Sniffing for beginners and Sniffing in switched
ethernet (Hakin9, issues 1/2003 and 2/2003). There is also a tutorial on arp
spoofing available on our site (http://www.hakin9.org).

Listing 1. What can we see when sniffing ICQ

21:57:50.043968 our.hostname.32786 > 64.12.24.93.5190:

 P 1772083278:1772083343(65) ack 2250007272 win 36720 (DF)

0x0000 4500 0069 f0de 4000 4006 462a 5061 5abc E..i..@.@.F*PaZ.

0x0010 400c 185d 8012 1446 699f d84e 861c 62e8 @..]...Fi..N..b.

0x0020 5018 8f70 5ad0 0000 2a02 3fb2 003b 0004 P..pZ...*.?..;..

0x0030 0006 0000 0000 0000 0000 0000 0000 0000

0x0040 0001 0933 3430 3237 3430 3336 0002 0015 ...340274036....

0x0050 0501 0001 0101 0100 0c00 0000 0068 6920 hi.

0x0060 7468 6572 6500 0600 00 there....

www.hakin9.org4 Hakin9 3/2004

A
tt

ac
k

Due to the ICQ’s immense
popularity, even a lazy spy can easily
find its protocol description on the
Net. The most covering and well-
structured unofficial specification
can be found at http://www.stud.uni-
karlsruhe.de/~uck4/ICQ/.

All of the existing guides are
unofficial, because the protocol is
proprietary and its specifications

were never made public. So what we
have is a reverse engineering result
that is good enough to write a client
or a traffic analyzer that will catch
conversations and passwords.

Passwords
It’s also worth mentioning that ICQ
passwords are transmitted as xored
strings, and it’s very easy to find

out position-dependent values they
are xored with, by looking at a login
packet that contains a password of
the maximal length (8 characters).
No need to change your password.
Just set any UIN/password pair in
the client and try to login. Watch what
tcpdump says (Listing 2).

We know (we read it in above
mentioned protocol specification)
that encoded password starts at the
fourth byte after the end of the UIN
string. In our case it is 91 53f5 b051
e3ba f6, we also know the original
password – it was butthead. Since
xor is a reversible operation (e. g.
a xor b=c means that c xor b=a),
knowing the original password and
the xored result will do the trick.
A simple Perl script (like the one
presented at Listing 3) can be written
to do that easily.

The result is \xf3\x26\x81\xc4

\x39\x86\xdb\x92. That is the string
that ICQ guys used.

IP for everyone
ICQ also exposes your IP address
to the world. Those who have
you on their contact list can see
it. Authorization approval is not
required, and this can easily be done
with a simple packet.

Initially that was a very good
intention to assure peer-to-peer
communications. First versions of
ICQ used to display the IP, then it
was hidden from the user, which
yet doesn’t mean the information on
IP address is not available. It is still
transmitted by the server and less
restrictive third party clients can
kindly provide anyone with your IP
address. You know what it means.

After the join
Since Mirabilis, the original ICQ
creators, were bought by AOL, a major
protocol join happened. The reason why
I named this chapter ICQ/AIM is that
the latest AOL Instant Messenger does
also use a version of OSCAR protocol,
despite some differences between
them. First, packets with messages are
built in a different way, but they are still
unencrypted (Listing 4).

Listing 2. Password sent in ICQ

01:04:41.474121 our.hostname.39169 > bucp1-vip-m.blue.aol.com.5190:

 P 1:141(140) ack 11 win 5840 (DF)

0x0000 4500 00b4 6b22 4000 4006 425f 5061 5abc E...k"@.@.B_PaZ.

0x0010 400c a199 9901 1446 a828 2c8d 0fb7 51d7 @......F.(,...Q.

0x0020 5018 16d0 788e 0000 2a01 051b 0086 0000 P...x...*.......

0x0030 0001 0001 0009 3334 3032 3734 3033 3600 340274036.

0x0040 0200 0891 53f5 b051 e3ba f600 0300 3349 S..Q......3I

0x0050 4351 2049 6e63 2e20 2d20 5072 6f64 7563 CQ.Inc..-.Produc

0x0060 7420 6f66 2049 4351 2028 544d 292e 3230 t.of.ICQ.(TM).20

0x0070 3030 622e 342e 3633 2e31 2e33 3237 392e 00b.4.63.1.3279.

0x0080 3835 0016 0002 010a 0017 0002 0004 0018 85..............

0x0090 0002 003f 0019 0002 0001 001a 0002 0ccf ...?............

0x00a0 0014 0004 0000 0055 000f 0002 656e 000e U....en..

0x00b0 0002 7573 ..us

Listing 3. Finding the key used to encode passwords in ICQ

#!/usr/bin/perl

$pass_orig = "butthead";

$pass_xored = "9153f5b051e3baf6";

$x = "";

for($i = $ix = 0; $i < length($pass_xored); $i += 2, $ix++) {
 $n = hex(substr($pass_xored, $i, 2)) ^ ord(substr($pass_orig, $ix, 1));

 $x .= chr($n);

}

for($i = 0; $i < length($x); $i++) {
printf "\\x%x", ord(substr($x, $i, 1));

}

print "\n";

Listing 4. Example of a version of OSCAR protocol used by AOL
Instant Messenger

01:12:02.260926 our.hostname.1110 > 64.12.24.178.5190:

 P 1027:1155(128) ack 1859 win 8644 (DF)

0x0000 4500 00a8 e702 4000 8006 8366 c0a8 7680 E.....@....f..v.

0x0010 400c 18b2 0456 1446 0017 5be9 4bd8 2040 @....V.F..[.K..@

0x0020 5018 21c4 4a77 0000 2a02 4f80 007a 0004 P.!.Jw..*.O..z..

0x0030 0006 0000 557c 0006 3137 3841 4546 0000 U|..178AEF..

0x0040 0001 0974 6865 6b6f 6e73 7432 0002 0054 ...thekonst2...T

0x0050 0501 0003 0101 0201 0100 4900 0000 003c I....<

0x0060 4854 4d4c 3e3c 424f 4459 2042 4743 4f4c HTML><BODY.BGCOL

0x0070 4f52 3d22 2366 6666 6666 6622 3e3c 464f OR="#ffffff"><FO

0x0080 4e54 204c 414e 473d 2230 223e 7965 703c NT.LANG="0">yep<

0x0090 2f46 4f4e 543e 3c2f 424f 4459 3e3c 2f48 /FONT></BODY></H

0x00a0 544d 4c3e 0003 0000 TML>....

www.hakin9.org 5Hakin9 3/2004

Instant Messenger security

Where UIN should be there is
an AIM screen name. The major
advantage of the AIM protocol
against ICQ is that it is no longer
possible to get someone’s plain
text password having access just to
their traffic. The reason is that AIM
uses the MD5 algorithm to make a
hash of the password. It’s a major
step forward, since such hashes are
generally irreversible. So hard times
for a password cracker utility are
guaranteed unless the password is
something trivial. We can only guess
why it is so only for AIM and for ICQ
is not.

Finally, in spite of being easy to
sniff, the ICQ protocol does have a
tricky feature: its server listens on
all the ports and it’s able to provide
the same protocol on any of them,
from 1 to 65535. Just try telnet to
login.icq.com yourself. This means,
the most unintelligent sniffers (that
are bound to a certain port) can be
deceived by changing the default
port number to something else in the
client application.

AOL TOC
The old yet still used and
recommended for third party client
applications version of the AIM
protocol is called TOC. This one
maintains a single connection to
toc.oscar.aol.com:9898.

Having adapted the tcpdump call
for it we’ll easily see messages on
this one too:

tcpdump -X -s 65535 \

 -i any 'port 9898 && tcp'

Which will give us the output as seen
on Listing 5.

Nothing else to say here, besides
the fact that passwords on TOC are
also transferred xored. By applying
the xor string finding technique
described for ICQ, one can find
out the phrase is Tic/Toc. Actually,
there is no major secret about it,
since back in 1998 the TOC protocol
specification was released under
the terms of GPL, and the phrase
was explicitly given there. The
specification was in the PROTOCOL
file included into the distribution
package of TiK, a Tcl/Tk client for
AIM.

After xoring passwords are
converted into a hex string we can
see quoted right after the screen
name (0x27010c5b331a0d). The
following simple script in Perl (Listing
7) will obtain the password in plain
text.

In rest, obviously, there is no
protocol encryption or security layers
either. So getting a temporary access
to your network traffic will expose all
of your terrible secrets. So don’t ever
tell anyone on the ICQ/AIM network
where you buried the bodies.

Yahoo!
The very own messaging service of
the first Internet portal in the world
basically has the same security
problem. There is no encryption,

A small client-side
digression
Speaking of clients, recently there are
reports about worms and viruses aimed
to exploit the standard client application.
Like one day there was a message
distributed all over the ICQ network
inviting everyone to visit a web site with
a funny cartoon. In fact, the page used
a hole in Internet Explorer to get ICQ to
send the deadly link further on to all of
their contacts.

The solution here would be switching
from the standard ICQ to Miranda, Trillian
or other widespread instant messaging
software. It mainly concerns Windows
users of course.

Listing 5. Dump of TOC protocol

22:24:19.037413 our.hostname.33010 > toc-m04.blue.aol.com.9898:

 P 1:49(48) ack 0 win 5840 (DF)

0x0000 4500 0058 7ecd 4000 4006 2cd3 5061 5abc E..X~.@.@.,.PaZ.

0x0010 400c a3d6 80f2 26aa 1992 0d07 801d dc34 @.....&........4

0x0020 5018 16d0 921e 0000 2a02 dc46 002a 746f P.......*..F.*to

0x0030 635f 7365 6e64 5f69 6d20 2274 6865 6b6f c_send_im.”theko

0x0040 6e73 7433 2220 2268 6920 7468 6572 6520 nst3”.”hi.there.

0x0050 6f6e 2041 494d 2200 on.AIM”.

Listing 6. Dump of TOC protocol -- xored password

20:56:11.479212 our.hostname.34054 > toc-m08.blue.aol.com.9898:

 P 34:142(108) ack 11 win 5840 (DF)

0x0000 4500 0094 4198 4000 4006 69f3 5061 5abc E...A.@.@.i.PaZ.

0x0010 400c a3af 8506 26aa bf02 d68a 8fe2 6018 @.....&.......`.

0x0020 5018 16d0 447b 0000 2a02 1644 0066 746f P...D{..*..D.fto

0x0030 635f 7369 676e 6f6e 206c 6f67 696e 2e6f c_signon.login.o

0x0040 7363 6172 2e61 6f6c 2e63 6f6d 2035 3139 scar.aol.com.519

0x0050 3020 2274 6f63 7669 6374 696d 2220 2230 0."tocvictim"."0

0x0060 7832 3730 3130 6335 6233 3331 6130 6422 x27010c5b331a0d"

0x0070 2065 6e67 6c69 7368 2022 6c69 6266 6972 .english."libfir

0x0080 6574 616c 6b20 7630 2e31 2e30 2d70 7265 etalk.v0.1.0-pre

0x0090 3230 2200 20".

Listing 7. Perl script to obtain the TOC password in plain text

#!/usr/bin/perl

$x = "Tic/Toc";

$pass_xored = "27010c5b331a0d";

$pass_orig = "";

for($i = $ix = 0; $i < length($pass_xored); $i += 2) {
 $n = hex(substr($pass_xored, $i, 2)) ^ ord(substr($x, $ix, 1));

 $pass_orig .= chr($n);

 $ix = 0 if ++$ix > length($x);
}

print "password = $pass_orig\n";

www.hakin9.org6 Hakin9 3/2004

A
tt

ac
k

not even scrambling of the packets
content. That is, knowing the port
number would do the trick.

tcpdump -X -s 65535 \

 -i any 'port 5050 && tcp'

This time our good buddy tcpdump
says what’s seen on Listing 8.

Here we have a packet that we
can extract anything from. There
are the both nicknames, one of
the sender as well as destination’s.
And there is the message itself.
However, Yahoo! protocol, just like
AIM, uses MD5 to make a hash of
the password, therefore password
sniffing is much more difficult.

Yahoo! Messenger opens a
single TCP/IP connection to its main
server, scs.msg.yahoo.com, port
5050. Using it the authentication
is done, as well as the text
messaging that follows. However,
there are separate servers for
other services that the messenger
provides. Catching file transfers
would involve sniffing connections
to filetransfer.msg.yahoo.com:80
and webcam.yahoo.com:5100 for
webcam images respectively.

MSN
In the recent version of their
protocol those of the great software
monopoly decided to use SSL for
all communications of their instant
messaging service that currently
goes under the name of .NET
messenger. Only God knows what
made them think for so long before

applying this security measure
– probably there was another lawsuit
with some SSL making company.

Talking about connections that
the client opens and closes during
a work session, there is quite a
handful of them in MSN. First it
connects to the main server called
messenger.hotmail.com, port
1863. No password check is done
on this phase. Instead, the client
is redirected to another, so called
login server. Then follows the .NET
passport (login and password pair)
verification, which is done in two
steps. First an HTTPS GET request
to nexus.passport.com reads the
hostname and port of the next
server, which does the authentication
(another HTTPS GET request).

Finally, when we are authorized,
the client continues operating on the
main TCP/IP connection until there
is a need to initiate a conversation.
Then the both clients open another
connection to their server, so we get

one stream per conversation, with a
server between them, so it cannot
really be considered peer-to-peer.

Even though everything is
done through the server, with all
of those redirections and a bunch
of connections being opened and
closed here and there, obtaining
the original unencrypted traffic is
the main difficulty in case of this
very protocol. Once someone gets
his hands on the traffic (by patching
DNS and pretending a server, for
example), there is no problem to get
the rest. Needs to mention, there are
still problems for an intruder, such as
passwords encrypted the same way
like they do it for Yahoo!, e. g. MD5
is used.

Making SSL obligatory is a really
good idea, having on mind there is
no guarantee that all the service
users are security experts. As usual,
MS addresses to regular computer
users who are better to protect even
without their consent. It would still
be risky if there was an enable SSL
checkbox which some well-wisher
would recommend to uncheck, then
getting direct to intercepting IM traffic
of a naive user.

Just like the case with ICQ,
there is an extensive unofficial
documentation for the protocol,
which is publicly available, located at
http://hypothetic.org/docs/msn/.

Jabber
Skipping all yada yada about

the protocol being flexible and thus,
extremely handy for developers,

Listing 8. What tcpdump says about Yahoo!

20:56:21.302176 our.hostname.42574 > cs47.msg.dcn.yahoo.com.5050:

 P 933410594:933410718(124) ack 3162461755 win 63712

 <nop,nop,timestamp 4138028 975496796> (DF)

0x0000 4500 00b0 2ab6 4000 4006 ca2a 5061 5abc E...*.@.@..*PaZ.

0x0010 d89b c1ae a64e 13ba 37a2 b722 bc7f 563b N..7.."..V;

0x0020 8018 f8e0 fa5f 0000 0101 080a 003f 242c _.......?$,

0x0030 3a24 e65c 594d 5347 000b 0000 0068 0006 :$.\YMSG.....h..

0x0040 5a55 aa56 c57b 3985 31c0 8074 6865 6b6f ZU.V.{9.1..sende

0x0050 6e73 74c0 8035 c080 7465 7374 6b6f 6e73 r12..5..destnick

0x0060 74c0 8031 34c0 8049 2062 7572 7269 6564 1..14..I.burried

0x0070 2074 6865 2062 6f64 6965 7320 696e 2074 .the.bodies.in.t

0x0080 6865 2062 6163 6b79 6172 642e 2044 6f6e he.backyard..Don

0x0090 2774 2074 656c 6c20 616e 796f 6e65 21c0 ‘t.tell.anyone!.

0x00a0 8036 33c0 803b 30c0 8036 34c0 8030 c080 .63..;0..64..0..

Keeping Jabber secure
If you want to keep your Jabber messaging secure, here is an example on how to
do it with the popular Psi client. Invoke the properties sheet for the account you are
using, and check Use SSL encryption on the Connection tab. Also, make sure that
the Allow Plaintext Login is not checked.

There is a possibility to make your Jabber even more secure by enabling the
OpenPGP support and specifying your own PGP public key. In this case messages
will be transmitted encrypted and only the recipient will be able to decrypt them, due
to the private key being in his exclusive possession. However, one must remember
that both sides must then use OpenPGP.

Not all client programs support that, but if we already chosen Psi, there is a way
to do that. One must only install gnupg, then the key file can be set in the Account tab
in the same account properties dialog.

www.hakin9.org 7Hakin9 3/2004

Instant Messenger security

freely available client and server
implementations are also very
flexible. So flexible that one can
decide what level of security he
wishes to have. The protocol uses a
single TCP/IP connection and XML
format for its packets. Catching the
traffic would certainly do the trick,
however the optional SSL support
is among the standard features. For
most clients a user has only to check
the use SSL option in order to have
all of his communications encrypted.
Normally an SSL-enabled Jabber
server would listen on two ports:
5222 for plain streams and 5223 for
SSL.

The same rule applies to Jabber
passwords too. It depends on the
client if they are transmitted as a plain
text or MD5 hash. This means that a
properly configured client/server pair

can provide a very reliable security
measures where they are wanted.

Besides client-to-server
communications, the distributed
nature of Jabber does also provide
server-to-server connections
that allow people using different
servers to stay in touch, creating
a whole decentralized network.
The inter-server communication is
established when some user tries
to send an event to someone from
another server. A major flaw here is
that there is no option to make the
server-to-server go through an SSL
connection – it’s always bare XML
over TCP/IP.

So being a client and using SSL
to connect to the server, it would
mean that breaking into your network
and just sniffing traffic wouldn’t be
enough for a spy to intercept your
Jabber conversations. Instead, he
must now think how to install a small
implant into the network where your
server is located. This will only give
him a possibility to catch the traffic
you send to users from other servers.
Meanwhile all messaging within your
server will remain secure.

Speaking of server-to-server
communications in Jabber, it’s
worth mentioning a good method
of protection against fake server

connects it uses. The method is
called dialback and it works like old
international phone services – first
you call the operator and tell them
which phone abroad you want to dial,
then they call you back and let you
speak. Basically, here it’s the same,
though no humans are involved and
DNS is used as a phone book.

The event-originating server
establishes a TCP/IP connection to
the receiving server through which
it sends a packet containing some
dialback key – a random text. Then
the connection is closed. Now it’s
the receiving server’s turn to lookup
DNS for the originating server, make
a connection and send the received
dialback key for verification. Unless
there is a hacked DNS in the server’s
network, this is a great yet simple
protection against Jabber server
spoofing.

Finally on Jabber, here are some
packets illustrations. Due to its XML
nature, all of them look very nice in
plain text – Listing 9, 10 and 11.

The Human Factor
It’s a well-known fact that the human
is one of the weakest links in any
computer system. Instant messaging
is not an exception. So let’s have a
story before we finish.

Picture 1. Use SSL encryption
– secure Psi configuration

Picture 2. PGP key – secure Psi
configuration

Listing 9. Jabber – this is how a message is sent

<message type='chat' to='someone@server.org'>

 <body>hello</body>

</message>

Listing 10. Jabber – this is how it looks when it reaches the destination
client

<message from='sender@server.org' to='someone@server.org' type='chat'>

 <body>hello</body>

</message>

Listing 11. Jabber – example of an authentication packet with an
MD5-hashed password

<iq type='set' id='2'>

 <query xmlns='jabber:iq:auth'>

 <username>someone</username>

 <digest>554dfe01ecefb3d73e0c83f0c3f348b2378ce2c7</digest>

 </query>

</iq>

www.hakin9.org8 Hakin9 3/2004

A
tt

ac
k

Once upon a time there was a
user. He used anti-virus monitors,
installed only right and licensed
programs, cleaned his tooth,
brushed his hair, etc. Once a
stranger knocked on his favorite
instant messenger and they talked.
The stranger gave many good
computer-related advices. Among

them there was a list of servers
through which the instant messaging
network could be accessed easier
and faster. Well, the user went to the
preferences and changed the server
address to what the guy gave him
and it worked well. In several days,
the server went down. Ok – the user
thought – servers go down from time

to time, so I’d better switch back to
the default server.

The truth is that the stranger was
a spy. The server address he gave
was that of his own computer, and
he had a proxy that just redirected
the traffic to the main server. This
way, all the traffic going to and from
the user was in his hands (classic
man-in-the-middle). So as soon
as the information he wanted to
obtain went to his possession,
there was no need to run the fake
server anymore. And that’s why it
disappeared.

Scary enough, isn’t it? But
this is just like it is done when
the technical part of the security
measures taken is impeccable. Be
sure this one is not the only way the
human factor can be exploited. But
instant messaging is for humans
after all. And being a human is
risky. Take care. n

Tools
Instant messaging is popular, no doubt about it. For many of us it’s a usual way of everyday communication, just like phone,
e-mail or crying out loud from the balcony to someone on the street. As the popularity of a particular IM service grows so does
the amount of tools that allow to spy on users. These tools are mostly service-specific and much more complicated than our good
traffic showing buddy, tcpdump. Well, their aim is different too.

There is a bunch of specific tools for ICQ, such as the shareware ICQ sniffer for Windows (http://www.icq-sniffer.com/) or
spyware like Chat Watch (http://www.zemericks.com/), which, being installed on a victim’s computer, allows to monitor their ICQ,
MSN, Yahoo and AIM messages. Obviously, its slogan is Protect your children from strangers. Nothing is said about the age of
such children – I guess it’s ok for them to be 40+ years old.

The guys that created a Windows sniffer for ICQ have also got a solution for those who make a hard use of AIM. Guess what
domain name they registered for it. Guessed? Right, it’s http://www.aimsniffer.com/.

The latter does also have a namesake for UNIX, a project hosted at SourceForge, called aimSniffer, written in Perl using
PCAP modules (http://sourceforge.net/projects/aimsniff/). It’s able to store the results in an SQL database and even has a web
front-end to access logs of conversations in a nice way.

For Gadu-Gadu there are some tools that allow to sniff conversations, for UNIX-like systems (http://sourceforge.net/projects/
ggsniff/) as well as for Windows (http://gg.wha.la/crypt/).

Back to UNIX, a while ago I wrote a small tool whose aim was to demonstrate that on many IM networks (and not only)
passwords are not really safe. The tool is called kripp (http://thekonst.net/kripp/), it is written in Perl, and it uses tcpdump through
a pipe. For each service a separate tcpdump process is run with some specific parameters. There are also regexps defined for
each service that are used to extract passwords from connections flow.

Using the script is simple. First, make sure you are root (remember, tcpdump runs only from the superuser account). If you
run kripp without parameters, it starts watching traffic for all the supported networks, e.g. icq, aim, ftp, http, cvs and pop3. Optional
parameters would include names of services passwords on which you would like to have logged. Here is an example of a session
of kripp’s work:

kripp icq

 Protocols being kripped: icq

 icq password :: our.hostname -> ibucp-vip-m.blue.aol.com :: 123456789 :: butthead

The approach used in this simple tool can be applied to sniff conversations too. Using tcpdump gives the advantage of not having
a need to get a clue with specific libraries, and flexible regexps of Perl make packets parsing easy.

Table 1. IM protocols from intruder’s point of view – summary

Protocol SSL Password
crypting

Other
security
measures

Other remarks

ICQ OSCAR No XOR
AOL OSCAR No MD5
AOL TOC No XOR
Yahoo! No MD5
MSN Yes MD5
Jabber Yes MD5 PGP server to server

communication
in plain text

